Sunday, 29 December 2013

evolutin.of stages in humans..................


evolution........................



MODERN PERIODIC TABLE VS MENDELEEV's PERIODIC TABLE


 MODERN PERIODIC TABLE                              vs                     MENDELEEV'S PERIODIC TABLE
Modern periodic table   Mendeleev's periodic table


The elements are arranged in grids.                                        The elements are arranged as a list.

The elements are arranged according to their                        The elements are arranged according to their
increasing atomic number.                                                      increasing atomic masses.
                                                                   
Transition metals are placed in different block.                       Transition metals were placed in groups with                                                                                                 non-transition metals

Empty spaces for undiscovered elements were                       Empty spaces were left for undiscovered
filled.                                                                                     metals

Cause of periodicity is given.                                                 Cause of periodic table is not given.
(electronic configuration)                                                                                        

Position of isotopes is logically explained.                                Position of isotopes is not correct according                                                                                                  to  Mendeleev's law of atomic masses.
                                                                                                                           

                                                           
                                                   

                       

                                                       

                                                           source-modern abc of chemistry(book)


                                                                                             

MENDELEEV'S PREDICTIONS



         


Sunday, 22 December 2013

HISTORY OF PERIODIC TABLE

                                  WHY ELEMENTS NEED TO BE CLASSIFIED?

                       The elements need to be classified so that they can be easily studied.    

                                                       PERIODIC TABLE-
     The periodic table arranges all of the known elements in order of increasing atomic number. Order generally coincides with increasing atomic mass. The different rows of elements are called periods. The period number of an element signifies the highest energy level an electron in that element occupies. Elements that lie in the same column on the periodic table (called a "group") have identical valance electron configurations and consequently behave in a similar fashion chemically. For instance, all the group 18 elements are inert, or noble gases.

                      SOME EARLIER ATTEMPTS  TO CLASSIFY ELEMENTS
      1   METALS AND NON METALS
     Among earlier classifications,Lavoisier classified elements into metals and non metals but it was proved to be inadequate.

                         
     2    DOBEREINER'S TRIADS
    He classified elements into group of 3,such that they had similar properties and the average of atomic masses of first and third elements was equal to the atomic mass of the middle or second element.
         Limitations-He could not classify all the known elements into triads.


                         

   3     NEWLAND'S  LAW OF OCTAVES
  He arranged the elements into the increasing order of their atomic masses such that the property of every eighth element was equal to the first element.
         Limitations-This law was only applicable on the elements till calcium.
                                 
 
    4    LOTHAR MEYER'S ARRANGEMENT
   He classified elements according to their atomic volumes.The atomic volume of an element is the volume occupied by 1 mole of an element in its solid state.
                                 
        
    5     MENDELEEV'S PERIODIC TABLE
   He  classified elements mainly on the basis of their reaction with oxygen and water.
                     Mendeleev's periodic law
          the physical and chemical properties of elements are periodic function of their atomic                 masses.
        Limitations-He could not tell the cause of periodicity.
                                  

    6      MODERN PERIODIC TABLE-MOSELEY
   He classified elements in the increasing order of their atomic numbers.
                     Modern periodic law
             the physical and chemical properties of elements are periodic function of their atomic                 numbers.
                                       
      
                         SOURCE-www.livescience.com;modern abc of chemitry[book]
  
                              




                           

speciation.............




Saturday, 14 December 2013

Important terms of heredity and evolution

Heredity: The transmission of characters (traits) from the parents to their off springs is called Heredity.

Variation: The differences in the character among the individuals of a species is called variation is necessity for organic evolution.
Both Heredity & variation are fundamental factors in the process of Evolution of an organism.

Genetics: The branch of biology which studies heredity & variation is called genetic.

Terms gene was coined by scientist – Johanssen in 1909.

Chromosomes: Chromosomes are thread like structures present in the nucleus of a cell which contain hereditary information of the cell. They are made up of DNA & proteins.

Gene: Gene is the unit of inheritance. Various genes are located in the chromosomes at fixed position genes are responsible for our characteristic features.

Chemically gene is a segment of a large polynucleotide molecule called de oxyribonucleic acid
DNA: Dexyribo nucleic acid DNA was first isolated by Frederick meisher from the nucleus of the pus cells.It is acidic in nature so the name is nucleic acid. DNA is a macromolecule/polymer which is made up of a large no. of smaller units called Nucleotide. So DNA is a polynucleotide.

Nucleotide is the basic structure unit of DNA.

Sex Determination: The process by which the sex of a per is determined is called sex determination.
The Chromosomes which determine the sex of a person called sex chromosomes which areof 2 types X & Y.           
                     XX combination is always found in females
                     XY combination is always found in males.

ORGANIC EVOLUTION
Evolution is the sequence of gradual changes which take place in the primitive organisms over millions of yrs. In which non species are provided.

DARWINISM / Theory of Natural Selection (by charles robert darwin)
(a) All the species produce a large no of offsprings but population remains fairly constant due to struggle bt the members of same species & different species for food, space & mate

(b) This struggle eliminates the unfit individuals. (Survival of the fittest)

(c) This gives orgin to variations which pass into progeny & over a long period of time, leads to origin of new species.
Limitations: It could not explain how the variations arise.

Saturday, 7 December 2013

evolution .....(introduction)



Evolution is the change in the inherited characteristics of biological populations over successive generations. Evolutionary processes give rise to diversity at every level of biological organisation, including species, individual organisms and molecules such as DNA and proteins.


All life on Earth is descended from a last universal ancestor that lived approximately 3.8 billion years ago. Repeated speciation and the divergence of life can be inferred from shared sets of biochemical and morphological traits, or by shared DNA sequences. These homologous traits and sequences are more similar among species that share a more recent common ancestor, and can be used to reconstruct evolutionary histories, using both existing species and the fossil record. Existing patterns of biodiversity have been shaped both by speciation and by extinction.

DISPERSION OF LIGHT






The light rays from the sun consist of seven different colors – red, orange, yellow, green, blue, indigo and violet (ROYGBIV). We see seven different colors when these sun are passed through a glass prism.
The splitting of a ray into its component colors is known as dispersion of light. The band of colors into which the light splits is known as a spectrum. White light consists of photons of various wavelengths (or colors). Photons of different wavelength travel with different speed. The red photon has the longest wavelength and the violet photon has the shortest wavelength. Thus when a white light passes through a prism, different photons cross the medium at different speeds and deviating by different angles. The red color appears at the top of the spectrum because it is bent the least or it is refracted the least.. On the other hand, the violet end of the spectrum is bent the most or refracted most, as it takes longer to traverse the glass medium.

           

                                   

When two prisms are placed with their vertices and bases in the opposite direction,  the spectrum of seven colors from the first prism enters the second prism and only a white light comes out.


                           
                                  

                                 REASON FOR RECOMBINATION


When white light is passed through a prism,7 bands of colors are coming out of the prism at angle to the direction of incident white ray,the rays are deviated toward the base of the prism 


If a plane mirroris placed in the path of the band so that the rays are reflected back,all rays retrace their path and emerge out as white ray. 

From this it is clear that a white ray passing through a prism is split up into a band and is turned toward the base and If a band of light is incident from the base of the prism they emerge out of the prism as white ray and again turned to ward the base of the prism. 

Therefore, when a white ray is passed through the prism they split up into a band and the band, when incident on another prism such that they are incident from the base, they recombine to white ray. In other words, the second prism is inverted so that the band is incident from the base of the second prism.





Saturday, 30 November 2013

DEFECTS IN VISION


                                   



      Myopia: Short-sightedness or Myopia is a condition when the person is able to see the objects that are nearby very clearly and is unable to view the distant objects easily. This defect arises as the image of the object that is supposed to from at the retina forms in front of the retina. The reasons behind this defect is the elongation of the lens.Since thinner the lens,less is the focal length,so that's why  the focal length of the lens decreases and consequently causes the focus,which was firstly on the retina,comes nearer to the lens.
  

    Hypermetropia: Long- sightedness or Hypermetropia is a condition where the person is able to see the objects that are distant clearly and is unable to view the nearby objects clearly. This defect arises as the image of the object that is supposed to from at the retina forms behind the retina.  A person with Hypermetropia can read comfortably only when reading material is kept beyond 25 cm from the eye. The reasons behind this defect is thickening of the eye lens.Since,thicker the lens,more is the focal length,so that's why the focal length of the lens increases and consequently causes the focus ,which was firstly on the retina,to move away, fartther from the lens.

 
     PresbyopiaAgeing leads to a decrease in the power of accommodation of the Human eye. Most of the people with this defect find it extremely difficult to see the nearby objects with an ease. The diminishing flexibility of the eye lens and the weakening of the ciliary muscles leads to this defect. This defect can be corrected with the help of corrective eye glasses. Bi-focal lenses are used to help people who have both the defects of vision (Myopia and Hypermetropia).

Friday, 15 November 2013

A JOURNEY THROUGH THE HUMAN EYE



human eye...............

The human eye is an organ that reacts to light and has several purposes. As a conscious sense organ, the mammalian eye allows vision. Rod and cone cells in the retina allow conscious light perception and vision including color differentiation and the perception of depth. The human eye can distinguish about 10 million colors.
Similar to the eyes of other mammals, the human eye's non-image-forming photosensitive ganglion cells in the retina receive light signals which affect adjustment of the size of the pupil, regulation and suppression of the hormone melatonin and entrainment of the body clock.

 1. vitreous body 2. ora serrata 3. ciliary muscle 4. ciliary zonules 5. Schlemm's canal 6. pupil 7. anterior chamber 8. cornea 9. iris 10. lens cortex 11. lens nucleus 12. ciliary process 13. conjunctiva 14. inferior oblique muscle 15. inferior rectus muscle 16. medial rectus muscle 17. retinal arteries and veins 18. optic disc 19. dura mater 20. central retinal artery 21. central retinal vein 22. optic nerve 23. vorticose vein 24. bulbar sheath 25. macula 26. fovea 27. sclera 28. choroid 29. superior rectus muscle 30. retina


General properties

The eye is not shaped like a perfect sphere, rather it is a fused two-piece unit. The smaller frontal unit, more curved, called the cornea is linked to the larger unit called the sclera. The corneal segment is typically about 8 mm (0.3 in) in radius. The sclerotic chamber constitutes the remaining five-sixths; its radius is typically about 12 mm. The cornea and sclera are connected by a ring called the limbus.
Human Iris, Blue type
The iris – the color of the eye – and its black center, the pupil, are seen instead of the cornea due to the cornea's transparency. To see inside the eye, an ophthalmoscope is needed, since light is not reflected out. The fundus (area opposite the pupil) shows the characteristic pale optic disk (papilla), where vessels entering the eye pass across and optic nerve fibers depart the globe.



Components

The eye is made up of three coats, enclosing three transparent structures. The outermost layer, known as the fibrous tunic, is composed of the cornea and sclera. The middle layer, known as the vascular tunic or uvea, consists of the choroid, ciliary body, and iris. The innermost is the retina, which gets its circulation from the vessels of the choroid as well as the retinal vessels, which can be seen in an ophthalmoscope.
Blood vessels can be seen within the sclera, as well as a strong limbal ring around the iris.
Within these coats are the aqueous humour, the vitreous body, and the flexible lens. The aqueous humour is a clear fluid that is contained in two areas: the anterior chamber between the cornea and the iris, and the posterior chamber between the iris and the lens. The lens is suspended to the ciliary body by the suspensory ligament (Zonule of Zinn), made up of fine transparent fibers. The vitreous body is a clear jelly that is much larger than the aqueous humour present behind the lens, and the rest is bordered by the sclera, zonule, and lens. They are connected via the pupil.

Pupil constriction

Lenses cannot refract light rays at their edges as well as they can closer to the center. The image produced by any lens is therefore somewhat blurry around the edges (spherical aberration). It can be minimized by screening out peripheral light rays and looking only at the better-focused center. In the eye, the pupil serves this purpose by constricting while the eye is focused on nearby objects. In this way the pupil has a dual purpose: to adjust the eye to variations in brightness and to reduce spherical aberration.


Effects of aging

There are many diseases, disorders, and age-related changes that may affect the eyes and surrounding structures.
As the eye ages, certain changes occur that can be attributed solely to the aging process. Most of these anatomic and physiologic processes follow a gradual decline. With aging, the quality of vision worsens due to reasons independent of diseases of the aging eye. While there are many changes of significance in the non-diseased eye, the most functionally important changes seem to be a reduction in pupil size and the loss of accommodation or focusing capability (presbyopia). The area of the pupil governs the amount of light that can reach the retina. The extent to which the pupil dilates decreases with age, leading to a substantial decrease in light received at the retina. In comparison to younger people, it is as though older persons are constantly wearing medium-density sunglasses. Therefore, for any detailed visually guided tasks on which performance varies with illumination, older persons require extra lighting. Certain ocular diseases can come from sexually transmitted diseases such as herpes and genital warts.










Tuesday, 12 November 2013

SOAPS AND DETERGENTS

Soaps are sodium salts of long chain carboxylic acids. The soapiness in soap comes from the sodium salts of fatty acids like stearic acidoleic acid andpalmitic acid.
Sodium Oleate  Sodium Palmitate  
The ionic end of the soap dissolves in water while the carbon chain dissolves in oil. The positively charged heads of the soap molecules repel each other and form a closed structure. This structure is called amicelle. The dirt is pulled and absorbed into the centre of the micelle. This property of soap makes it anemulsifier.
Sometimes, soaps don’t lather well with hard water. Hard water contains calcium and magnesium, which combine with soap molecules to form insoluble precipitates.
Detergents consist of long chain molecules such as sodium n-dodecyl benzene sulphonate and sodium n- dodecyl sulphate. The charged ends of these compounds do not form insoluble precipitates with the calcium and magnesium ions in water.  Detergents are
used in shampoos and products for cleaning clothes.
             
structure of sodium n-dodecyl benzene sulphonate,
structure of sodium n-dodecyl sulphate

SOURCE: www.learnnext.com

Saturday, 9 November 2013

reproduction in human beings..........................

 sexual reproduction in human beings

Sexual intercourse (or coitus or copulation) is, broadly, the insertion and thrusting of a male's penis, usually when erect, into a female's vagina for the purposes of sexual pleasure or reproduction; also known as vaginal intercourse or vaginal sex. Other forms of penetrative sexual intercourse include penetration of the anus by the penis (anal sex), penetration of the mouth by the penis or oral penetration of the vulva or vagina (oral sex), sexual penetration by the fingers (fingering), and sexual penetration by use of a strap-on dildo. These activities involve physical intimacy between two or more individuals and are usually used among humans solely for physical or emotional pleasure and commonly contribute to human bonding.A variety of views concern what constitutes sexual intercourse or other sexual activity and their effects on health. While the term sexual intercourse, particularly the variant coitus, most commonly denotes penile-vaginal penetration and the possibility of creating offspring (the fertilization process known as reproduction), oral sex (especially when penetrative) and particularly penile-anal sex are also commonly considered sexual intercourse. Non-penetrative sex acts (such as non-penetrative forms of cunnilingus or mutual masturbation) have been termed outercourse, but may additionally be among the sexual acts contributing to human bonding and considered sexual intercourse The term sex, often a shorthand for sexual intercourse, can mean any form of sexual activity. Because people can be at risk of contracting sexually transmitted infections during these activities, though the transmission risk is significantly reduced during non-penetrative sex,safe sex practices are advised.



Health effects

Benefits

In humans, sexual intercourse and sexual activity in general have been reported to produce health benefits as varied as improved sense of smell, stress and blood pressure reduction,increased immunity, and decreased risk of prostate cancer. Sexual intimacy, as well as orgasms, increases levels of the hormone oxytocin, also known as "the love hormone", which helps people bond and build trust. Sexual intercourse and sexual activity in general are aspects of many mood repair strategies, which mean they can be used to help dissipate feelings of sadness or depression.


Risks

Sexually transmitted infections (STIs) can be spread by person-to-person sexual contact, especially penetrative sexual intercourse. There are 19 million new cases of sexually transmitted infections every year in the U.S., and, in 2005, the World Health Organization estimated that 448 million people aged 15–49 were being infected a year with curable STIs (such as syphilis, gonorrhea and chlamydia).
STIs are caused by bacteria, viruses and parasites, which are passed from person to person during sexual contact. Some, in particular HIV and syphilis, can also be passed in other ways, including from mother to child during pregnancy and childbirth, through blood products, and by shared hypodermic needles. Gonococcal or chlamydial infections often produce no symptoms. Untreated chlamydial infection can lead to female infertility and ectopic pregnancy. Human papillomavirus can lead to genital and cervical cancers. Syphilis can result in stillbirths and neonatal deaths. Untreated gonococcal infections result in miscarriages, preterm births and perinatal deaths. Infants born to mothers with untreated gonorrhoea or chlamydia can develop neonatal conjunctivitis (a serious eye infection), which can lead to blindness. Hepatitis B can also be transmitted through sexual contact. Globally, there are about 350 million chronic carriers of hepatitis B.



Social effects

Adults

Some researchers, such as Alex Comfort, posit three potential advantages of sexual intercourse in humans, which are not mutually exclusive: reproductive, relational, and recreational. While the development of the birth-control pill and other highly effective forms of contraception in the mid- and late 20th century increased people's ability to segregate these three functions, they still overlap a great deal and in complex patterns. For example: A fertile couple may have sexual intercourse while contracepting not only to experience sexual pleasure (recreational), but also as a means of emotional intimacy (relational), thus deepening their bonding, making their relationship more stable and more capable of sustaining children in the future (deferred reproductive). This couple may emphasize different aspects of sexual intercourse on different occasions, being playful during one episode of sexual intercourse (recreational), experiencing deep emotional connection on another occasion (relational), and later, after discontinuing contraception, seeking to achieve pregnancy (reproductive, or more likely reproductive and relational).


Adolescents

With regard to adolescent sexuality, sexual intercourse is usually for relational and recreational purposes as well. However, teenage pregnancy is often disparaged, and research suggests that the earlier onset of puberty for children puts pressure on children and teenagers to act like adults before they are emotionally or cognitively ready,and thus are at risk to suffer from emotional distress as a result of their sexual activities. Some studies have concluded that engaging in sexual activity leaves adolescents, especially girls, with higher levels of stress and depression. A majority of adolescents in the United States have been provided with some information regarding sexuality,though there have been efforts among social conservatives in the United States government to limit sex education in public schools to abstinence-only sex education curricula.